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Computer vision in aquaculture: a case study of juvenile fish
counting
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Nicholas P. L. Tuckey b, Maren Wellenreuther b,c and Linley K. Jesson a

aThe New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand; bThe New Zealand
Institute for Plant and Food Research Limited, Nelson, New Zealand; cThe University of Auckland, Auckland,
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ABSTRACT
In aquaculture breeding or production programmes, counting
juvenile fish represents a considerable cost in terms of the human
hours needed. In this study, we explored the use of two state-of-
the-art machine learning architectures (Single Shot Detection,
hereafter SSD and Faster Regions with convolutional neural
networks, hereafter Faster R-CNN) to augment a manual image-
based juvenile fish counting method for the Australasian snapper
(Chrysophrys auratus) bred at The New Zealand Institute for Plant
and Food Research Limited. We tested model accuracy after
tuning for confidence thresholds and non-maximal suppression
overlap parameters, and implementing a bias correction using a
Poisson regression model. Validation of image data showed that
after tuning, bias-corrected SSD and Faster R-CNN models had
mean absolute percent errors (MAPE) of less than 10%, with SSD
having MAPE of less than 5%. Comparison of the results with
those from manual counts showed that, while manual counts are
slightly more accurate (MAPE = 1.56), the machine learning
methods allow for more rapid assessment of counts and thus
facilitating a higher throughput. This work represents a first step
for deploying machine learning applications to an existing real-
life aquaculture scenario and provides a useful starting point for
further developments, such as real-time counting of fish or
collecting additional phenotypic data from the source images.
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Introduction

Aquaculture has a central role to play in feeding the world (FAO 2018). Continued
growth in human population sizes and a focus on high quality animal protein is predicted
to increase this need even more in the future (Godfray et al. 2010; Béné et al. 2015). To
meet this challenge, aquaculture researchers and producers are seeking innovative ways
to make aquaculture production more efficient and to improve fish quality and welfare
(Antonucci and Costa 2020). One area that has seen considerable focus is the use of
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new technologies for counting and measuring fish in aquaculture facilities (Fu and Yuna
2022; Rasmussen et al. 2022), and similar technologies are also being developed for
informing fisheries assessments and for monitoring wild fish populations (Connolly
et al. 2021). Fish counting is critically important in aquaculture breeding and production
programmes for operational reasons (e.g. moving fish), identifying and mitigating stres-
sors (e.g. evaluating fish density), and to optimise the conditions for fish health and
growth (e.g. estimating required feed amount). For aquaculture breeding programmes
this information is also used to inform the selection of the best performing individuals
which continue to the next generation as broodstock (Gjedrem and Robinson 2014;
Ashton et al. 2019; Valenza-Troubat et al. 2022).

Innovative applications that seek to measure and/or count fish are challenging since
fish are sensitive, easily stressed, and free to move in an environment in which lighting,
visibility, and stability are generally not controllable, and the hardware must operate
underwater or in wet locations (Mathiassen et al. 2011). However, counting and measur-
ing fish represents a considerable operational cost in terms of the manual hours needed,
particularly for juvenile fish, which can number in the tens to hundreds of thousands per
tank (Li et al. 2020). Manual counts also increase the potential for introducing intra- and
inter-observer variability, potentially leading to increased measurement errors. Conse-
quently, automated fish counting methods have been a focus for the industry for some
time, and various approaches have been trialled including potentiometric bridges (e.g.
SR-1601, Smith-Root, WA, USA) where fish are pumped from tank to tank and, more
recently, a variety of computer vision approaches (Li et al. 2021). Examples of these
include the commercial range manufactured by Vaki (Kopavogur, Iceland) and
systems such as XperCount focusing specifically on shrimp (xpertSea, QC, Canada). In
recent years, the application of machine learning or deep learning in computer vision
allows for automated object recognition and detection ability (Li et al. 2021). Thus,
generalised automation of this task using image-based analyses represents a significant
opportunity in this area, and machine-learning models provide an important toolset
that enables automation, with the added potential to increase throughput and, with
improved models, accuracy (Fu and Yuna 2022).

Computer vision based object detection can be accomplished through a variety of
methods (Yang et al. 2021). Prior to deep learning, object detection was a multi-step
process, beginning with edge detection and extraction of features using techniques
such as Scale Invariant Feature Transform (SIFT) (Gupta et al. 2019), Speeded Up
Robust Feature (SURF) (Wang et al. 2019), Histogram of Oriented Gradients (HOG)
or Haar Cascades (Zhang et al. 2021), then images were compared with existing object
models, typically at multi-scale sizes, to detect and locate objects in the picture. More
recently, deep learning methods, like Convolutional Neural Networks (CNN) or versions
of the You Only Look Once (YOLO) algorithm and its subsequent advanced versions,
have been shown to extract complicated features with high prediction accuracy (Yang
et al. 2021; Mahanty et al. 2022).

A particular challenge in computer vision and deep learning is the detection of small
objects. Detection of small objects can be particularly problematic as the objects take up a
smaller amount of the image and therefore contain less information content for machine
learning models to base predictions on (Bochkovskiy et al. 2020). Several techniques exist
to improve the detection of small objects such as increasing the image capture resolution,
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increasing the model’s input resolution, tiling images, generating more data via augmen-
tation, auto learning model anchors and filtering out extraneous classes (Solawetz 2020).
However, these techniques can also increase the amount of information that models have
available which correlate with the size of models and the associated computation time.
Most state-of-the-art detectors struggle with small object detection, particularly so if
there is size heterogeneity in the image (Ge et al. 2020; Nguyen et al. 2020).

Plant & Food Research has been running selective breeding programmes for the native
finfish species Australasian snapper (Chrysophrys auratus) and silver trevally (Pseudocar-
anx georgianus) since 2016 at its Finfish Facility in Nelson, New Zealand (Ashton et al.
2019; Baesjou and Wellenreuther 2021; Valenza-Troubat et al. 2022). As part of the on-
growing procedures, fish are routinely moved between tanks to avoid overcrowding. This
process is conducted by anaesthetising fish, collecting them in plastic bins partially filled
with seawater and then transporting them to a new tank. A digital image is taken of each
bin to count fish after the tank move is completed (see Figure 1). During this process, an
initial live estimate of fish numbers can be produced and an accurate count is sub-
sequently produced manually from images after the tank move.

In the present work, we explored the use of two state-of-the-art model architectures to
automate the counting process of juvenile snapper in the hatchery. The first model was a
Faster Regions with convolutional neural networks model (R-CNN), while the second
model applied a Single Shot Detection (SSD) approach. Faster R-CNN is a two-stage
method that first generates region proposals, and then targets the boundary boxes and
category predictions of the region proposals. In contrast, SSD is a one-stage detection
method that does not need to select region proposals, but use regression to directly
predict the positioning of boxes and object categories, which further reduces the
running time.

We first outline the steps used to implement the models and then we compare the
results from the models with those generated using manual methods. Finally, we

Figure 1. A, Sample image of SSD (Single shot multibox object detection) model prediction on juven-
ile fish bins. The fish sizes in the 394 images used in this study ranged from 20 to 80 mm and the
number of fish instances present in the images ranged from 12 to 618. B, Sample image of Faster
R-CNN (Regions with convolutional neural networks) model prediction on juvenile fish bins. The
fish sizes in the 394 images used in this study ranged from 20 to 80 mm and the number of fish
instances present in the images ranged from 12 to 618.
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discuss the future directions of this work, and highlight areas that are particularly fruitful
to assist aquaculture operations.

Materials and methods

Data

We assessed the ability of computer vision models to detect small fish using image data of
juvenile snapper in the breeding programme at the Plant and Food Research’s Nelson
Research Centre Finfish Facility in New Zealand. We compared this to manual counts
as usually conducted as part of the fish processing pipelines at Plant and Food and refer-
enced these both against a ‘true’ count taken from annotated images.

The dataset consists of images of snapper at different age and size classes taken with a
Canon Powershot camera. Fish age groups ranged from 26 to 97 days old post hatch
grouped in 3- to 7-day periods. The number of fish instances present in any given
image ranged from 12 to 618. The size classes of individual juvenile snapper in the
images ranged from 20 to 80 mm.

Fish were sampled from tanks into fish bins and images were taken for each bin.
Manual counts of images were performed while visually inspecting the images by an
observer on the PC, and then individually identified fish were marked with image proces-
sing software (Microsoft Paint or Nikon NIS-Elements) by clicking on each fish separ-
ately, leaving a mark on the counted fish. In this way, the visual signature reduces the
chance of recounting the same fish. The total number of dots (i.e. counted fish) was
then summed up per image. In total, 394 images (in JPG format) were counted and
used. For the model training, each fish in the fish bin images was labelled manually
using CVAT (Computer Vision Annotation Tool; Sekachev et al. 2020). Each image
had thus associated annotations (in XML format), consisting of the filename, image
height, image width, and bounding box coordinates of all the fishes present in a particular
image.

Counts estimated either by computer vision or manually were compared to a ‘true
count’ of the number of bounding boxes labelled during model training. The manual
bounding box labels were considered more accurate than manual counts as observers
spent considerable effort in annotating each fish in the image.

Model training

Model training and selection constituted an iterative process by which the best method
for object detection was first selected, and then the best method for counting fish was
evaluated by testing combinations of parameter values and thresholds as well as evaluat-
ing statistical methods for correcting for bias.

We derived unbiased model performance estimates by training and testing the models
using the k-fold cross-validation approach. In this method, the dataset is randomly split
into k equal-sized folds, and k models are trained, each with k−1 folds used for training,
and one fold for testing, such that each model has a different combination of folds for
training and a different test fold. We calculated the performance of each model on its
test data, resulting in a final average and standard deviation of each metric. Here, we
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chose k to be 3 to reduce computation time. This resulted in the testing datasets contain-
ing one-third of the dataset (131 to 132 images each). The computer-vision model train-
ing processes further split their training folds to allow for early stopping using 10% of the
data (26 images).

For object detection we selected one state-of-the-art method from each of the two
main branches of deep-learning-based object detection: the two-stage method Faster
R-CNN (Ren et al. 2015) and the one-stage method Single Shot Multibox (Liu
et al. 2016). As a generalisation, two-stage detectors have higher localisation and
object recognition accuracy, whereas one-stage detectors achieve higher inference
speeds. The first stage of Faster R-CNN (Region Proposal Network) proposes candi-
date object bounding boxes. These are then extracted from each candidate region in
the second stage using a RoI Pooling operation for subsequent classification and
bounding-box regression tasks. In SSD, boxes are predicted from input images directly
without the region proposal step, thus they are time efficient and more suitable for
real-time devices.

The model parameters were initialised from models pre-trained on the ImageNet
(Russakovsky et al. 2015) and COCO (Lin et al. 2014) datasets, then trained with
the juvenile fish bins dataset. This technique is known as transfer learning, and it
allows the training of deep machine learning models with small datasets. The
models were end-to-end trained on a high performance cluster computing environ-
ment equipped with 4 units of 16 GB Nvidia Tesla V100 GPU and 4 units of 40
GB Nvidia A100 GPU.

Data augmentation is a technique that randomly perturbs data and labels during train-
ing to increase data diversity and potentially increase model performance and generali-
sability. We used online data augmentation, meaning that the augmentations were
applied randomly to the images at each training iteration. During SSD model training,
we randomly resized images in the relative range 0.4 to 1.0, preserving the aspect ratio
of the image, then randomly cropped to 512 × 512 pixels. During Faster R-CNN
model training, we randomly cropped images to 2000 × 2000 pixels. Additionally,
during training with both models, random horizontal flipping was applied.

The objects in the image can be of different sizes and shapes, and to allow for this, the
model predicts multiple bounding boxes of different sizes and aspect ratios at each
location in the image. The vast majority of these boxes have very low confidence, and
are filtered out. Ideally, for each instance of fish in the image, the model should return
only a single bounding box; however, usually more than one box remains for each
object. To select the best bounding box from the multiple predicted bounding boxes,
these object detection models use non-maximum suppression (NMS). This method
decides which boxes belong to the same object based on an overlap threshold, and
then selects only the highest confidence box for each object. During development, we
adjusted the threshold to suit the high degree of overlap that can occur between
different fish.

Object detection models produce a list of bounding box predictions and associated
confidence scores, including many of low confidence, but the task is to produce a
count of the boxes, so it is necessary to count the boxes that have a confidence above
a certain threshold. This threshold can be tuned to optimise different metrics on the
training dataset. It may be desirable to balance the precision and recall of the thresholded
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model. If these are given equal weight, this can be done by maximising the F1 score.
Another approach is to tune it to give an unbiased count; the sum of the predicted
count across the training dataset should equal the sum of the actual count. Because
the counts in this study vary more than one magnitude in value, to avoid biasing the
tuning towards higher-count images, we use the mean percentage error (MPE) rather
than the mean error. An alternative method of removing any count bias is to train a
Poisson regression model to generate ‘corrected’ counts from the ‘raw’ predicted
counts, i.e. counts predicted from the confidence-thresholded model. This can also
correct for bias related to the count magnitude, so can improve the performance of
MPE-tuned counts. This correction model may be further improved by including
other variables with a relationship to the raw predicted counts, and in this case we
also included a parameter for the area of the bounding box (see Results).

Evaluation metrics

For the detection task, we adopted a common evaluation technique known as mean
average precision (mAP) calculated based on the Pascal VOC 2007 challenge (Evering-
ham et al. 2010). The average precision algorithm gives an overall view of model per-
formance by matching predicted boxes to labelled boxes in order of prediction
confidence, then averaging the precision across a range of 11 different confidence
threshold values. This penalises missing object instances (false negatives), duplicate
detections of one instance and false positive detections. Matches are defined as when
the area of intersection between the predicted box and the labelled box, divided by the
area of the union of those boxes is greater than a threshold, typically, as here, 0.5. We
did not use mAP for model selection, instead it was calculated using the test folds as a
means to evaluate final performance.

The mAP value averages across confidence levels; however, to use the outputs of
an object detection model for counting, we must select a specific confidence
threshold. The performance of a model averaged across confidence levels may not
predict well the performance of the model at a specific confidence threshold. There-
fore, to evaluate the confidence-thresholded models, we examined a number of
metrics: the F1 score (the harmonic mean between precision and recall), precision,
recall and Mean Absolute Percentage Error. These metrics were used for selecting
optimal NMS overlap and confidence thresholds, so were calculated using the train-
ing folds.

To evaluate models for the fish counting task, we calculated the mean absolute percen-
tage error (MAPE) and the explained deviance (D2). MAPE is similar to the mean absol-
ute error, commonly used in counting evaluation (Gao et al. 2020), but uses the
percentage count error rather than the count error, which means it scales with the
sample count, as the error is expected to. D2 is a generalisation of the coefficient of deter-
mination (R2) suitable for use with non-normal errors, such as count data, where the
error is generally proportional to the count. The actual fish counts were taken from
the labelled images and compared to manual fish counts taken using clickers and pre-
dicted counts from the models, allowing us to compare the model’s counting perform-
ances to manual counting performance. These metrics were the final performance
metrics, so were calculated using the test folds.
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Results

Manual data processing

The manual count processing was done using a point and click PC-based workflow run
on the digital images captured during a tank move. Average click speeds during counting
tend to range between 1 and 2 clicks per second. Fish numbers in each batch are highly
variable, but can be up to 10,000 individuals. As such the amount of time required to
manually count a batch of fish after a tank move can be up to 3 h (staff dependent),
whereas batch processing digital images using the models presented here should
return a count across 100 bins of fish in approximately 30 s.

Object detection

Figure 1 shows an example of predicted bounding boxes for juvenile fish counting. As
shown in Table 1, the best model using the Faster-RCNN object detector resulted in
87.78% of average precision averaged across 3 folds with standard deviation of 0.40%.
Similarly, the best model using the SSD object detector resulted in 90.77% of average pre-
cision averaged across 3 folds with a percent standard deviation of 0.4. Table 1 also shows
the inference speed of both models measured during prediction; SSD achieved nearly half
the time that Faster R-CNN took to predict a single image. This suggests that while both
SSD and Faster R-CNN were similar in terms of average precision, SSD is faster at detect-
ing juvenile fish instances.

However, bothmodels struggled todetect someof thefish instances, particularlywhen the
fishwere overlapping (see Figure 2). In Figure 2, the actual image contains 209fish instances,
whereas in predicted image the SSD model was only able to predict 170 and Faster R-CNN
was only able to predict 106 fish instances. The best mean average precision (91%) was
achieved with an NMS of 0.6 (Figure 3). Even by adjusting the NMS threshold, the model
still failed to predict fish with extremely high levels of overlap. To understand why Faster
R-CNN performed poorly at higher values of NMS, the precision and recall were calculated
with a fixed confidence threshold of 0.5 (Figure 4). Compared to SSD, Faster R-CNN’s pre-
cision reduces and becomes more variable at higher NMS overlap thresholds, while recall is
similar. This implies that Faster R-CNN produces more excess object predictions, thus
tuning the NMS overlap threshold is important for removing these excess predictions
while at the same time balancing the need to detect overlapping objects.

Evaluation of different NMS overlap thresholds across confidence thresholds
(Figure 5) showed a maximum F1 for the Faster R-CNN architecture at an overlap
threshold of 0.4. For SSD the maximum F1 was as an NMS overlap of 0.5. For many
values of NMS, F1 was relatively flat for Faster R-CNN across confidence thresholds.
However, the peak confidence threshold for SSD was generally 0.4 or 0.5.

Table 1. Validation result comparison between Faster R-CNN (Regions with convolutional neural
networks) and SS (Single Shot Multibox Detection) at NMS 0.5.

Approach Model Backbone mAP ($\%$) STD ($\%$)
Inference speed
(ms/image)

One-stage SSD Resnet50 90.77 0.4 184
Two-stage Faster R-CNN Resnext101-FPN 87.78 0.34 324
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Our trials of two methods for selecting the optimal confidence threshold –maximising
the F1 score, and minimising the absolute value of the mean percentage error (equivalent
to the mean absolute percentage error) revealed clear trade-offs between metrics across

Figure 2. Examples where the detector struggled to accurately count all fish in an image. In this
instance the actual image contains 209 fish. The predicted number of fish instances in the given
image were 170 (SSD) and 106 (Faster R-CNN).

Figure 3. Non-maximum suppression (NMS) vs mean Average Precision (mAP) for the two architec-
tures (SSD and Faster R-CNN) calculated on the test data folds. mAP was not used as a metric to opti-
mise the NMS overlap, it is reported here as a stand-alone evaluation of final object detection
performance.

Figure 4. Precision and Recall for seven different NMS overlap thresholds using Faster R-CNN and SSD
architecture at a fixed confidence threshold of 0.5. These metrics were calculated on the training data
folds to enable final selection of model and tuning parameters.
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confidence thresholds (Figure 6). For example, as precision increased, recall decreased.
Low confidence thresholds tended to undercount (MPE < 0) while over-counting
(MPE > 0) occurred at higher confidence thresholds. However, achieving an MPE of 0
(i.e. the predicted count matched the labelled count) was possible on the training data
set. The best confidence thresholds were found to be 0.4 and 0.5 for F1-tuned Faster
R-CNN and SSD, respectively, and 0.2 and 0.4 for MPE-tuned Faster R-CNN and
SSD, respectively.

Fish counting

Despite tuning, comparison of the true and predicted counts on the test data fold showed
biases (Figure 7). Examination of the data suggested biases were associated with the size
of the bounding boxes. For both small and large bounding boxes the variance in the pre-
dicted count increased as the mean increased; however, the actual relationship between
predicted and true count differed depending on the box size. This suggested that fish size
or overlap between fish influenced estimation.

Figure 8 shows the results of statistical corrections calculated using the test data. For
each of the optimal models selected during model confidence threshold tuning (either F1
or MPE tuning), D2 increased and MAPE decreased when a Poisson correction model
was added with the raw predicted count as features, and further increased when a correc-
tion for box size was also added. For the test data the evaluation of MPE-tuned SSD

Figure 6. Evaluation of confidence thresholds using F1, MPE (mean percentage error), precision, and
recall metrics on the training folds.

Figure 5. F1 scores across NMS overlap and confidence thresholds for Faster R-CNN and SSD archi-
tectures. F1 was calculated on the training data folds to enable final selection of model and tuning
parameters.
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Figure 7. Actual vs. predicted counts for the F1-tuned Faster R-CNN model showing bimodal behav-
iour associated with box size, a proxy for fish age on the training folds. Actual counts were derived
from counts of the bounding boxes applied during manual label annotation of images.

Figure 8. Mean absolute percentage error (MAPE) and deviance squared (D2) for each thresholded
object detection model combined with each set of features for the Poisson correction model, on
the test folds. The Poisson correction model either had the raw predicted count or the raw predicted
count plus box area as features.
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including a Poisson regression with both the raw predicted count and the box area as fea-
tures was almost as accurate as that obtained from traditional manual counts (D2 of
99.11% vs. D2 of 99.71%, and MAPE of 4.82 vs. 1.64; Table 2 and Figures 8 and 9).

Discussion

Automatic object counting is receiving increasing attention in diverse fields, including
cell and egg counting, traffic vehicle flow monitoring, pedestrian density warning, and

Table 2. Count Estimate evaluation comparison between SSD, Faster R-CNN and Manual counts
calculated using the test folds.
Model Features Mean MAPE STD MAPE Mean $D^2$ STD $D^2$

F1-tuned FasterRCNN No correction 9.923299 0.299792 94.14404 0.257038
F1-tuned FasterRCNN Count 8.949331 0.253394 95.89687 0.376965
F1-tuned FasterRCNN Count + Box size 5.349279 0.602887 97.89961 0.890595
F1-tuned SSD No correction 9.216894 0.294025 95.2305 0.056165
F1-tuned SSD Count 7.699626 0.295538 97.7353 0.269661
F1-tuned SSD Count + Box size 6.030539 0.359601 98.43926 0.17193
MPE-tuned FasterRCNN No correction 9.098381 0.576865 95.99155 0.563955
MPE-tuned FasterRCNN Count 8.312315 0.467646 96.32243 0.37179
MPE-tuned FasterRCNN Count + Box size 5.114355 0.564129 98.10591 0.835107
MPE-tuned SSD No correction 8.025924 0.725994 98.09984 0.288988
MPE-tuned SSD Count 5.527671 0.157331 98.82238 0.100708
MPE-tuned SSD Count + Box size 4.817984 0.039546 99.11085 0.068114
Manual count No correction 1.558165 0.154087 99.6977 0.206328
Manual count Count 1.694189 0.202058 99.69888 0.214771
Manual count Count + Box size 1.635933 0.223024 99.70537 0.219284

Bolded values show the best mean D2 or lowest MAPE for manual and counts estimated by manual count and by the best
model.

Figure 9. Comparison of true vs. predicted counts between models on the testing folds. Corrected
MPE SSD refers to the MPE-tuned SSD model corrected with a Poisson regression using the raw pre-
dicted count and box area category features.
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wildlife abundance and diversity estimation in reserves. However, counting in aquacul-
ture is usually achieved manually, or using statistical methods, which is both time-con-
suming and tedious, and hence recent work has been exploring the possibility to apply
automated object counting to assist fish breeding and production programmes (Saber-
ioon et al. 2017; Li et al. 2021; Yang et al. 2021). The present work explored two state-
of-the-art machine learning models for counting juvenile snapper in images, and
below we discuss the success at implementing the models, including considerations
about the speed of computation, then we compare the results from the models to
those generated using manual methods. Finally, we conclude by summing our results
up and by making suggestions about future applications and associated challenges.

Both SSD and Faster R-CNN models performed well at locating objects within the
images, particularly given the challenges presented by the dataset (e.g. high overlap of
objects). We were able to achieve deviance values for MPE-tuned SSD models similar
to those obtained by manual counts (D2 > 95%); however, the MAPE for these models
was still much higher than manual counts (MAPE < 4.8% for MPE-tuned SSD cf.
<1.64% for manual counts; Table 2). This indicates that there is more under- and
over-counting than occurs with manual counts. Similarly, the F1 tuned models per-
formed at greater than 90% D2 on the test fold data, with MAPE less than 10% (Table 2).

We would like to clarify that automatic counts do not need to achieve 100% accuracy
when compared to actual counts. Instead, a typically lower accuracy is acceptable and
where this accuracy threshold lies is an application-dependent question, and needs to
be decided on with the operators to ensure the application is fit for purpose. In our
case, 5% errors or lower was deemed to be in the acceptable range as gains due to
time savings would outweigh the minimal gains in errors. However, in other scenarios,
where accuracy has a more pertinent nature (e.g. counting deformities), then more strin-
gent metrics may be applied towards this goal. The main obstacle to increase the accuracy
is related to the small size of the objects being detected and the high degree of overlap
between objects. Both trained SSD and Faster-RCNN models detected small fish reason-
ably well, and the final MAPE was low (<10%) and with a D2 > 94%. For both models,
when fish overlapped greatly in the image due to high fish density, then the prediction
error rate increased, as predicted by previous research (Connolly et al. 2021).

The higher error rate of automated as opposed to manual counts for many of our final
models does represent a challenge for adoption in an applied setting, and therefore
further work may be required to improve accuracy. While errors of less than 5% may
seem sufficient for a data scientist, this likely means a different thing to workers at facili-
ties who are making decisions regarding holding densities and feed amounts, and where
differences of 5% can thus significantly impact on animal welfare and operational costs.
Methodological adjustments during fish counting that help to minimise overlap of indi-
viduals would increase the prediction accuracy and so real-life testing with end users
remains a crucial next step to ensure further refinements and adoption of this method.

Overlap of objects, or occlusion, is a general problem encountered by automated
methods and considerable tuning and statistical corrections were needed here to help
overcome errors that result from this occlusion. A recent paper on the same species as
investigated here examined video footage derived from baited remote underwater
video stations (BRUVS) to develop an automated and repeatable deep learning
method for monitoring relative abundance of snapper to support stock assessment
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models of this species (Connolly et al. 2021). Occlusion due to fish overlap created a
similar problem in their study. Similar to our study, the authors tested combinations
of varying confidence thresholds, on/off use of sequential non-maximum suppression
(Seq-NMS), and inclusion of a statistical correction step to further optimise their mod-
elling approach. They found that a combination of Seq-NMS, a 55% confidence
threshold, and a cubic polynomial corrective equation provided the best predictive accu-
racy at high densities. In our study, the inclusion of both a Poisson regression of the pre-
dicted count and the box size provided a similar result. However, other corrective
equations may be needed for this study to further refine the modelling approach in
the future and to increase the accuracy of automated counts, while decreasing costs.

One of the major advantages of machine learning methods is the ability to automate
and increase the efficiency of methods. The testing and tuning of these computer vision
pipelines took a few months to establish and build into a stable architecture. However,
after this initial investment in time, a minimal amount of time is required to maintain
the pipeline and to perform checks and upgrades to improve and refine model perform-
ance. Thus, taken together, when comparing our machine learning model performance
to the time and effort required to undertake the manual counting, we found that while
the manual setup requires comparatively minimal investment and infrastructure (e.g.
bins and staff trained in carrying out manual counts), any subsequent counting work
necessitates an investment of roughly 1–3 h for each batch counted (dependent on fish
numbers). We would also like to note that there may be a trade-off between manual
labour time and accuracy levels achieved, i.e. with increasing manual labour time it is
foreseeable that the accuracy of counting would decline in parallel, as has been observed
when conducting other fish counting methods (Sale and Douglas 1981).

To reach harvest size in species grown in aquaculture, species like snapper are typically
grown for 2–3 years, and to achieve this, staff are required to move fish multiple times as
they grow (Garcia Garcia et al. 2011). Knowing the fish density in a tank is also necessary
when estimating the feed amount required, reducing inter-individual aggression or when
estimating the water flow needed to ensure high oxygen availability and the removal of
waste products (Muir 2005; Ashley 2007). Given the frequent need of counting fish, par-
ticularly when individuals are young and thus in need to be moved more frequently, the
time savings achieved by implementing the automated model would sum up quite con-
siderably. In addition to the need of knowing fish biomass, data on individual morpho-
logical performance in terms of growth achievements and deformities are also of major
importance in aquaculture. Images pave the way towards this goal, as once they have
been taken they facilitate additional measurements to be taken at minimal costs in
terms of time. Thus, future coupling of fish counting software and morphometric
tools holds significant value for aquaculture breeding programmes, and also production
facilities, as they can provide rapid insights into growth metrics and deformity ratios of
fish cohorts. Further improvements and associated gains can be made if image inferen-
cing can be run at point of capture using simple hardware, such as an off-the-shelf GoPro
camera or a mobile phone. Data can then be returned live and this can reduce the number
of grading and sorting operations needed as real time decision making is applied during
these operations. We estimate total staff hours needed for counting and grading oper-
ations in our hatchery would reduce to at least half if live count data were available.
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Our study adds to the mounting evidence showing that computer vision technologies,
as a non-invasive method, could be used to count the number of objects in aquaculture
effectively and quickly (Saberioon et al. 2017). The use of machine learning for object
detection and counting in images has been growing rapidly in recent years, with frequent
advances and new approaches (Ge et al. 2020). However, when transferring these
methods to live animals in an aquaculture setting, specific issues arise that need
careful consideration (Bochkovskiy et al. 2020 Apr 23; Nguyen et al. 2020; Solawetz
2020). Specifically, challenges caused by the objects themselves, such as the transparency
of the object, the difference in shape and size of the object, and the overlapping object
issues caused by the high fish densities and/or fish movement. Moreover, additional
difficulties can arise from the complexity of the background environment, such as inter-
ference issues, the disturbance of water flow, and the complexity of the tank or seabed
environment. Future focus needs to be on improving the accuracy of models to get
closer to or matching those achieved by manual counts, as well as coupling the
methods to new hardware developments to both enable real time data capture as well
as to improve data capture quality (e.g. new types of bins or chutes) (Li et al. 2020).
Enabling real-time deployment and decision making would be particularly valuable, con-
tributing to reduced operational costs of aquaculture operations.

A further improvement to the method would be setting up the imaging equipment to
take multiple images, potentially using burst capture or as a short video clip. Each frame
could be processed separately, with averaging applied, or video tracking could be
implemented to resolve ambiguities between frames. This would improve the accuracy
at the expense of moderate increases in processing power and time.

Another small variation of the documented technique would be to reduce the overall
fish density in bins for future use, because while this would increase the number of bins
that would have to be carried by staff, it could also considerably increase the accuracy of
the model by reducing the overlap of fish, and thus objects that need to be counted.
Furthermore, in addition to counting fish, additional measurements could be retrieved
form the same image data (e.g. size, disease, deformities) to yield added insights into
fish welfare and performance. This would be particularly significant for selective breeding
programmes, where selection of superior individuals is used to generate elite lines that
show improved performance traits (Murata et al. 1996).

Conclusion

The models developed in this study were able to identify most juvenile fish objects in the
bin images taken in the hatchery. While the models did not get down to the error rate of
that of manual counts, we were able to reduce errors to less than 10% and less than 5% in
MPE – tuned models. In addition, our documented method added a large increase in
processing speed, thus facilitating throughput and decreasing economic costs. Based
on the training dataset we identified the best models using R-CNN or SSD architecture
tuned either by MPE or F1. When evaluated on the test dataset the MPE-tuned SSD
models in which a bias correction including a Poisson regression of initial predicted
counts and a parameter estimating box size, we suggest that this model is likely to be
most accurate for processing fish within the Plant and Food fish facility. However, in
other facilities or if fish sizes fell outside the distribution of the current dataset, we
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suggest that further evaluation and monitoring of the counts is needed. It is very likely
that these tuning parameters may be specific to particular characteristics of the current
data.

We have highlighted a number of future directions which could be pursued with this
work to improve and enhance its use and to allow greater levels of information to be col-
lected about aquaculture populations and their performance. Although this application
was developed specifically for use with fish larvae, it should be useful for older life
stages of fish (and possibly other animals) for which satisfactory images are available.
In addition, the machine learning work carried out in this project is built around a gen-
eralisable architecture, which has an additional benefit of enabling projects across a wide
diversity of problems from fish to plants.
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